Random multiplicative functions: the Selberg-Delange class

نویسندگان

چکیده

Let 1∕2≤β<1, p be a generic prime number and fβ random multiplicative function supported on the squarefree integers such that (fβ(p))p is an i.i.d. sequence of variables with distribution P(f(p)=−1)=β=1−P(f(p)=+1). Fβ Dirichlet series fβ. We prove formula involving measure-preserving transformations relates Riemann ζ Fβ, for certain values β, give application. Further, we hypothesis connected mean behavior weighted partial sum

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Selberg–Delange method in short intervals with an application

In this paper, we establish a general mean value result of arithmetic functions over short intervals with the Selberg-Delange method. As an application, we generalize the Deshouillers-Dress-Tenenbaum’s arcsin law on divisors to the short interval case.

متن کامل

On the Zeros of Functions in the Selberg Class

It is proved that under some suitable conditions, the degree two functions in the Selberg class have infinitely many zeros on the critical line.

متن کامل

Strong Multiplicity One for the Selberg Class

In [7] A. Selberg axiomatized properties expected of L-functions and introduced the “Selberg class” which is expected to coincide with the class of all arithmetically interesting L-functions. We recall that an element F of the Selberg class S satisfies the following axioms. • In the half-plane σ > 1 the function F (s) is given by a Dirichlet series ∑∞n=1 aF (n)n with aF (1) = 1 and aF (n) ≪ǫ n ...

متن کامل

Hierarchy of the Selberg zeta functions

We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.

متن کامل

Arithmetical Functions I: Multiplicative Functions

Truth be told, this definition is a bit embarrassing. It would mean that taking any function from calculus whose domain contains [1,+∞) and restricting it to positive integer values, we get an arithmetical function. For instance, e −3x cos2 x+(17 log(x+1)) is an arithmetical function according to this definition, although it is, at best, dubious whether this function holds any significance in n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2021

ISSN: ['1083-589X']

DOI: https://doi.org/10.1214/21-ecp396